This vignette uses an example of a 3 × 3 matrix to illustrate some properties of eigenvalues and eigenvectors. We could consider this to be the variance-covariance matrix of three variables, but the main thing is that the matrix is square and symmetric, which guarantees that the eigenvalues, λi are real numbers. Covariance matrices are also positive semi-definite, meaning that their eigenvalues are non-negative, λi ≥ 0.
## [,1] [,2] [,3]
## [1,] 13 -4 2
## [2,] -4 11 -2
## [3,] 2 -2 8
Get the eigenvalues and eigenvectors using eigen()
; this
returns a named list, with eigenvalues named values
and
eigenvectors named vectors
.
## [1] 17 8 7
## [,1] [,2] [,3]
## [1,] 0.7454 0.6667 0.0000
## [2,] -0.5963 0.6667 0.4472
## [3,] 0.2981 -0.3333 0.8944
The eigenvalues are always returned in decreasing order, and each
column of vectors
corresponds to the elements in
values
.
The following steps illustrate the main properties of eigenvalues and eigenvectors. We use the notation A = V′ΛV to express the decomposition of the matrix A, where V is the matrix of eigenvectors and Λ = diag(λ1, λ2, …, λp) is the diagonal matrix composed of the ordered eigenvalues, λ1 ≥ λ2 ≥ …λp.
zapsmall()
is handy for cleaning up tiny values.## [,1] [,2] [,3]
## [1,] 1.000e+00 3.016e-16 7.368e-17
## [2,] 3.016e-16 1.000e+00 -2.046e-17
## [3,] 7.368e-17 -2.046e-17 1.000e+00
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
## [1] 32
## [1] 32
## [1] 402
## [1] 402
## [1] 952
## [1] 952
## [1] 3
## [1] 3
## [,1] [,2] [,3]
## [1,] 0.08824 0.02941 -0.01471
## [2,] 0.02941 0.10504 0.01891
## [3,] -0.01471 0.01891 0.13340
## [1] 0.14286 0.12500 0.05882
## [,1] [,2] [,3]
## [1,] 0.0000 -0.6667 0.7454
## [2,] 0.4472 -0.6667 -0.5963
## [3,] 0.8944 0.3333 0.2981
values(mpower(A,p)) = values(A)^p
, where
mpower(A,2) = A %*% A
, etc.## eigen() decomposition
## $values
## [1] 289 64 49
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.7454 0.6667 0.0000
## [2,] -0.5963 0.6667 0.4472
## [3,] 0.2981 -0.3333 0.8944
## [1] 4913 512 343
## [1] 83521 4096 2401