Package: candisc 0.9.0
candisc: Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis
Functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA' design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The 'candisc' package generalizes this to higher-way 'MANOVA' designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative.
Authors:
candisc_0.9.0.tar.gz
candisc_0.9.0.zip(r-4.5)candisc_0.9.0.zip(r-4.4)candisc_0.9.0.zip(r-4.3)
candisc_0.9.0.tgz(r-4.4-any)candisc_0.9.0.tgz(r-4.3-any)
candisc_0.9.0.tar.gz(r-4.5-noble)candisc_0.9.0.tar.gz(r-4.4-noble)
candisc_0.9.0.tgz(r-4.4-emscripten)candisc_0.9.0.tgz(r-4.3-emscripten)
candisc.pdf |candisc.html✨
candisc/json (API)
NEWS
# Install 'candisc' in R: |
install.packages('candisc', repos = c('https://friendly.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/friendly/candisc/issues
dimension-reductionmultivariate-linear-modelsvisualization
Last updated 7 months agofrom:e0bbf1506a. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | OK | Nov 03 2024 |
R-4.5-linux | OK | Nov 03 2024 |
R-4.4-win | NOTE | Nov 03 2024 |
R-4.4-mac | NOTE | Nov 03 2024 |
R-4.3-win | NOTE | Nov 03 2024 |
R-4.3-mac | NOTE | Nov 03 2024 |
Exports:can_lmcancorcandisccandiscListdataIndexpredictor.namesredundancyscoresvarOrdervecscalevectorsWilks
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDataclicolorspacecowplotcpp11DerivdigestdoBydplyrevaluatefansifarverfastmapfontawesomeFormulafsgenericsggplot2gluegtableheplotshighrhtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6rappdirsRColorBrewerRcppRcppEigenrglrlangrmarkdownsassscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml